A Go-based server implementation for the Model Context Protocol (MCP) with Grafana Tempo integration.
This MCP server allows AI assistants to query and analyze distributed tracing data from Grafana Tempo. It follows the Model Context Protocol to provide tool definitions that can be used by compatible AI clients such as Claude Desktop.
Build and run the server:
# Build the server
go build -o tempo-mcp-server ./cmd/server
# Run the server
./tempo-mcp-server
Or run directly with Go:
go run ./cmd/server
The server now supports two modes of communication:
The default port for the HTTP server is 8080, but can be configured using the SSE_PORT
environment variable.
When running in HTTP mode, the server exposes the following endpoints:
http://localhost:8080/sse
- For real-time event streaminghttp://localhost:8080/mcp
- For MCP protocol messagingYou can build and run the MCP server using Docker:
# Build the Docker image
docker build -t tempo-mcp-server .
# Run the server
docker run -p 8080:8080 --rm -i tempo-mcp-server
Alternatively, you can use Docker Compose for a complete test environment:
# Build and run with Docker Compose
docker-compose up --build
.
├── cmd/
│ ├── server/ # MCP server implementation
│ └── client/ # Client for testing the MCP server
├── internal/
│ └── handlers/ # Tool handlers
├── pkg/
│ └── utils/ # Utility functions and shared code
└── go.mod # Go module definition
The Tempo MCP Server implements the Model Context Protocol (MCP) and provides the following tools:
The tempo_query
tool allows you to query Grafana Tempo trace data:
query
: Tempo query string (e.g., {service.name="frontend"}
, {duration>1s}
)url
: The Tempo server URL (default: from TEMPO_URL environment variable or http://localhost:3200)start
: Start time for the query (default: 1h ago)end
: End time for the query (default: now)limit
: Maximum number of traces to return (default: 20)username
: Username for basic authentication (optional)password
: Password for basic authentication (optional)token
: Bearer token for authentication (optional)The Tempo query tool supports the following environment variables:
TEMPO_URL
: Default Tempo server URL to use if not specified in the requestSSE_PORT
: Port for the HTTP/SSE server (default: 8080)./run-client.sh tempo_query "{resource.service.name=\\\"example-service\\\"}"
You can use this MCP server with Claude Desktop to add Tempo query tools. Follow these steps:
Example Claude Desktop configuration:
{
"mcpServers": {
"temposerver": {
"command": "path/to/tempo-mcp-server",
"args": [],
"env": {
"TEMPO_URL": "http://localhost:3200"
},
"disabled": false,
"autoApprove": ["tempo_query"]
}
}
}
For Docker:
{
"mcpServers": {
"temposerver": {
"command": "docker",
"args": ["run", "--rm", "-i", "-e", "TEMPO_URL=http://host.docker.internal:3200", "tempo-mcp-server"],
"disabled": false,
"autoApprove": ["tempo_query"]
}
}
}
The Claude Desktop configuration file is located at:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
~/.config/Claude/claude_desktop_config.json
You can also integrate the Tempo MCP server with the Cursor editor. To do this, add the following configuration to your Cursor settings:
{
"mcpServers": {
"tempo-mcp-server": {
"command": "docker",
"args": ["run", "--rm", "-i", "-e", "TEMPO_URL=http://host.docker.internal:3200", "tempo-mcp-server:latest"]
}
}
}
To use the Tempo MCP server with n8n, you can connect to it using the MCP Client Tool node:
Add an MCP Client Tool node to your n8n workflow
Configure the node with these parameters:
http://your-server-address:8080/sse
(replace with your actual server address)Connect the MCP Client Tool node to an AI Agent node that will use the Tempo querying capabilities
Example workflow: Trigger → MCP Client Tool (Tempo server) → AI Agent (Claude)
Once configured, you can use the tools in Claude with queries like:
{duration>1s}
"{service.name=\"frontend\"}
"{http.status_code=500}
"This project is licensed under the MIT License.