Professional MCP server providing ML-powered author disambiguation and comprehensive researcher profiles using the OpenAlex database.
A streamlined Model Context Protocol (MCP) server for author disambiguation and academic research using the OpenAlex.org API. Specifically designed for AI agents with optimized data structures and enhanced functionality.
For detailed installation instructions, see INSTALL.md.
Clone the repository:
git clone https://github.com/drAbreu/alex-mcp.git
cd alex-mcp
Create a virtual environment:
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
Install the package:
pip install -e .
Configure environment:
export [email protected]
Run the server:
./run_alex_mcp.sh
# Or, if installed as a CLI tool:
alex-mcp
Add to your Claude Desktop configuration file:
{
"mcpServers": {
"alex-mcp": {
"command": "/path/to/alex-mcp/run_alex_mcp.sh",
"env": {
"OPENALEX_MAILTO": "[email protected]"
}
}
}
}
Replace /path/to/alex-mcp
with the actual path to the repository on your system.
You can load this MCP server in your OpenAI agent workflow using the agents.mcp.MCPServerStdio
interface:
from agents.mcp import MCPServerStdio
async with MCPServerStdio(
name="OpenAlex MCP For Author disambiguation and works",
cache_tools_list=True,
params={
"command": "uvx",
"args": [
"--from", "git+https://github.com/drAbreu/[email protected]",
"alex-mcp"
],
"env": {
"OPENALEX_MAILTO": "[email protected]"
}
},
client_session_timeout_seconds=10
) as alex_mcp:
await alex_mcp.connect()
tools = await alex_mcp.list_tools()
print(f"Available tools: {[tool.name for tool in tools]}")
This MCP server is specifically optimized for academic research workflows:
# Optimized for academic research workflows
from alex_agent import run_author_research
# Enhanced functionality with streamlined data
result = await run_author_research(
"Find J. Abreu at EMBO with recent publications"
)
# Clean, structured output for AI processing
print(f"Success: {result['workflow_metadata']['success']}")
print(f"Quality: {result['research_result']['metadata']['result_analysis']['quality_score']}/100")
# Standard launch
uvx --from git+https://github.com/drAbreu/[email protected] alex-mcp
# With environment variables
[email protected] uvx --from git+https://github.com/drAbreu/[email protected] alex-mcp
Search for authors with streamlined output for AI agents.
Parameters:
name
(required): Author name to searchinstitution
(optional): Institution name filtertopic
(optional): Research topic filtercountry_code
(optional): Country code filter (e.g., "US", "DE")limit
(optional): Maximum results (1-25, default: 20)Streamlined Output:
{
"query": "J. Abreu",
"total_count": 3,
"results": [
{
"id": "https://openalex.org/A123456789",
"display_name": "Jorge Abreu-Vicente",
"orcid": "https://orcid.org/0000-0000-0000-0000",
"display_name_alternatives": ["J. Abreu-Vicente", "Jorge Abreu Vicente"],
"affiliations": [
{
"institution": {
"display_name": "European Molecular Biology Organization",
"country_code": "DE"
},
"years": [2023, 2024, 2025]
}
],
"cited_by_count": 316,
"works_count": 25,
"summary_stats": {
"h_index": 9,
"i10_index": 5
},
"x_concepts": [
{
"display_name": "Astrophysics",
"score": 0.8
},
{
"display_name": "Machine Learning",
"score": 0.6
}
]
}
]
}
Features: Clean structure optimized for AI reasoning and disambiguation
Retrieve works for a given author with enhanced filtering capabilities.
Parameters:
author_id
(required): OpenAlex author IDlimit
(optional): Maximum results (1-50, default: 20)order_by
(optional): "date" or "citations" (default: "date")publication_year
(optional): Filter by specific yeartype
(optional): Work type filter (e.g., "journal-article")authorships_institutions_id
(optional): Filter by institutionis_retracted
(optional): Filter retracted worksopen_access_is_oa
(optional): Filter by open access statusEnhanced Output:
{
"author_id": "https://openalex.org/A123456789",
"total_count": 25,
"results": [
{
"id": "https://openalex.org/W123456789",
"title": "A platform for the biomedical application of large language models",
"doi": "10.1038/s41587-024-02534-3",
"publication_year": 2025,
"type": "journal-article",
"cited_by_count": 42,
"authorships": [
{
"author": {
"display_name": "Jorge Abreu-Vicente"
},
"institutions": [
{
"display_name": "European Molecular Biology Organization"
}
]
}
],
"locations": [
{
"source": {
"display_name": "Nature Biotechnology",
"type": "journal"
}
}
],
"open_access": {
"is_oa": true
},
"primary_topic": {
"display_name": "Biomedical Engineering"
}
}
]
}
Features: Comprehensive work data with flexible filtering for targeted queries
This MCP server provides focused, structured data specifically designed for AI agent consumption:
# Target high-impact journal articles
works = await retrieve_author_works(
author_id="https://openalex.org/A123456789",
type="journal-article", # Focus on journal publications
open_access_is_oa=True, # Open access only
order_by="citations", # Most cited first
limit=15
)
# Career transition analysis
authors = await search_authors(
name="J. Abreu",
institution="EMBO", # Current institution
topic="Machine Learning", # Research focus
limit=10
)
from alex_mcp.server import search_authors_core
# Comprehensive author search
results = search_authors_core(
name="J Abreu Vicente",
institution="EMBO",
topic="Machine Learning",
limit=20
)
print(f"Found {results.total_count} candidates")
for author in results.results:
print(f"- {author.display_name}")
if author.affiliations:
current_inst = author.affiliations[0].institution.display_name
print(f" Institution: {current_inst}")
print(f" Metrics: {author.cited_by_count} citations, h-index {author.summary_stats.h_index}")
if author.x_concepts:
fields = [c.display_name for c in author.x_concepts[:3]]
print(f" Research: {', '.join(fields)}")
from alex_mcp.server import retrieve_author_works_core
# Comprehensive work retrieval
works = retrieve_author_works_core(
author_id="https://openalex.org/A5058921480",
type="journal-article", # Academic focus
order_by="citations", # Impact-based ordering
limit=20
)
print(f"Found {works.total_count} publications")
for work in works.results:
print(f"- {work.title}")
if work.locations:
journal = work.locations[0].source.display_name
print(f" Published in: {journal} ({work.publication_year})")
print(f" Impact: {work.cited_by_count} citations")
if work.open_access and work.open_access.is_oa:
print(" โ Open Access")
# Analyze career transitions
def analyze_career_path(author_result):
affiliations = author_result.affiliations
if len(affiliations) > 1:
print("Career path:")
for aff in sorted(affiliations, key=lambda x: min(x.years)):
years = f"{min(aff.years)}-{max(aff.years)}"
print(f" {years}: {aff.institution.display_name}")
# Research evolution
if author_result.x_concepts:
print("Research areas:")
for concept in author_result.x_concepts[:5]:
print(f" {concept.display_name} (score: {concept.score:.2f})")
# Usage
results = search_authors_core("Jorge Abreu Vicente")
if results.results:
analyze_career_path(results.results[0])
# Required
export [email protected]
# Optional settings
export OPENALEX_MAX_AUTHORS=100 # Maximum authors per query
export OPENALEX_USER_AGENT=research-agent-v1.0
export ALEX_MCP_VERSION=4.1.0
# Rate limiting (respectful usage)
export OPENALEX_RATE_PER_SEC=10
export OPENALEX_RATE_PER_DAY=100000
# For comprehensive research applications
config = {
"max_authors_per_query": 25, # Detailed author analysis
"max_works_per_author": 50, # Complete publication history
"enable_all_filters": True, # Full filtering capabilities
"detailed_affiliations": True, # Complete institutional data
"research_concepts": True # Detailed concept analysis
}
alex-mcp/
โโโ src/alex_mcp/
โ โโโ server.py # Main MCP server
โ โโโ data_objects.py # Data models and structures
โ โโโ utils.py # Utility functions
โโโ examples/
โ โโโ basic_usage.py # Simple examples
โ โโโ advanced_queries.py # Complex query examples
โ โโโ integration_demo.py # AI agent integration
โโโ tests/
โ โโโ test_server.py # Server functionality tests
โ โโโ test_integration.py # Integration tests
โโโ docs/
โโโ api_reference.md # Detailed API documentation
# Install test dependencies
pip install -e ".[test]"
# Run functionality tests
pytest tests/test_server.py -v
# Test with real queries
python examples/basic_usage.py
# Test AI agent integration
python examples/integration_demo.py
# Test author disambiguation
python examples/basic_usage.py --query "J. Abreu" --institution "EMBO"
# Test work retrieval
python examples/advanced_queries.py --author-id "A123456789" --type "journal-article"
# Test integration patterns
python examples/integration_demo.py --workflow "career-analysis"
Perfect integration with AI-powered research analysis:
# Enhanced academic research agent
from alex_agent import AcademicResearchAgent
agent = AcademicResearchAgent(
mcp_servers=[alex_mcp], # Streamlined data processing
model="gpt-4.1-2025-04-14"
)
# Complex research queries with structured data
result = await agent.research_author(
"Find J. Abreu at EMBO with machine learning publications"
)
# Rich, structured output for AI reasoning
print(f"Quality Score: {result.quality_score}/100")
print(f"Author disambiguation: {result.confidence}")
print(f"Research fields: {result.research_domains}")
# Collaborative research analysis
async def research_collaboration_network(seed_author):
# Find primary author
authors = await alex_mcp.search_authors(seed_author)
primary = authors['results'][0]
# Get their works
works = await alex_mcp.retrieve_author_works(
primary['id'],
type="journal-article"
)
# Analyze co-authors and build network
collaborators = set()
for work in works['results']:
for authorship in work.get('authorships', []):
collaborators.add(authorship['author']['display_name'])
return {
'primary_author': primary,
'publication_count': len(works['results']),
'collaborator_network': list(collaborators),
'research_impact': sum(w['cited_by_count'] for w in works['results'])
}
We welcome contributions to improve functionality and add new features:
git checkout -b feature/enhanced-filtering
This project is licensed under the MIT License. See LICENSE for details.