Convert between various file formats using Pandoc
Klavis AI is open source MCP integrations for AI Applications. Our API provides hosted, high quality, secure MCP servers, eliminating auth management and client-side code.
Python
pip install klavis
TypeScript/JavaScript
npm install klavis
Sign up at klavis.ai and create your API key.
If you already have an MCP client implementation in your codebase:
Python Example
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType
klavis_client = Klavis(api_key="your-klavis-key")
# Create a YouTube MCP server instance
youtube_server = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.YOUTUBE,
user_id="user123", # Change to user id in your platform
platform_name="MyApp" # change to your platform
)
print(f"Server created: {youtube_server.server_url}")
TypeScript Example
import { KlavisClient, Klavis } from 'klavis';
const klavisClient = new KlavisClient({ apiKey: 'your-klavis-key' });
// Create Gmail MCP server with OAuth
const gmailServer = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.Gmail,
userId: "user123",
platformName: "MyApp"
});
// Gmail needs OAuth flow
await window.open(gmailServer.oauthUrl);
Integrate directly with your LLM provider or AI agent framework using function calling:
Python + OpenAI Example
import json
from openai import OpenAI
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat
OPENAI_MODEL = "gpt-4o-mini"
openai_client = OpenAI(api_key="YOUR_OPENAI_API_KEY")
klavis_client = Klavis(api_key="YOUR_KLAVIS_API_KEY")
# Create server instance
youtube_server = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.YOUTUBE,
user_id="user123",
platform_name="MyApp"
)
# Get available tools in OpenAI format
tools = klavis_client.mcp_server.list_tools(
server_url=youtube_server.server_url,
format=ToolFormat.OPENAI,
)
# Initial conversation
messages = [{"role": "user", "content": "Summarize this video: https://youtube.com/watch?v=..."}]
# First OpenAI call with function calling
response = openai_client.chat.completions.create(
model=OPENAI_MODEL,
messages=messages,
tools=tools.tools
)
messages.append(response.choices[0].message)
# Handle tool calls
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
result = klavis_client.mcp_server.call_tools(
server_url=youtube_server.server_url,
tool_name=tool_call.function.name,
tool_args=json.loads(tool_call.function.arguments),
)
# Add tool result to conversation
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"content": str(result)
})
# Second OpenAI call to process tool results and generate final response
final_response = openai_client.chat.completions.create(
model=OPENAI_MODEL,
messages=messages
)
print(final_response.choices[0].message.content)
TypeScript + OpenAI Example
import OpenAI from 'openai';
import { KlavisClient, Klavis } from 'klavis';
// Constants
const OPENAI_MODEL = "gpt-4o-mini";
const EMAIL_RECIPIENT = "[email protected]";
const EMAIL_SUBJECT = "Hello from Klavis";
const EMAIL_BODY = "This email was sent using Klavis MCP Server!";
const openaiClient = new OpenAI({ apiKey: 'your-openai-key' });
const klavisClient = new KlavisClient({ apiKey: 'your-klavis-key' });
// Create server and get tools
const gmailServer = await klavisClient.mcpServer.createServerInstance({
serverName: Klavis.McpServerName.Gmail,
userId: "user123",
platformName: "MyApp"
});
// Handle OAuth authentication for Gmail
if (gmailServer.oauthUrl) {
console.log("Please complete OAuth authorization:", gmailServer.oauthUrl);
await window.open(gmailServer.oauthUrl);
}
const tools = await klavisClient.mcpServer.listTools({
serverUrl: gmailServer.serverUrl,
format: Klavis.ToolFormat.Openai
});
// Initial conversation
const messages = [{
role: "user",
content: `Please send an email to ${EMAIL_RECIPIENT} with subject "${EMAIL_SUBJECT}" and body "${EMAIL_BODY}"`
}];
// First OpenAI call with function calling
const response = await openaiClient.chat.completions.create({
model: OPENAI_MODEL,
messages: messages,
tools: tools.tools
});
messages.push(response.choices[0].message);
// Handle tool calls
if (response.choices[0].message.tool_calls) {
for (const toolCall of response.choices[0].message.tool_calls) {
const result = await klavisClient.mcpServer.callTools({
serverUrl: gmailServer.serverUrl,
toolName: toolCall.function.name,
toolArgs: JSON.parse(toolCall.function.arguments)
});
// Add tool result to conversation
messages.push({
role: "tool",
tool_call_id: toolCall.id,
content: JSON.stringify(result)
});
}
}
// Second OpenAI call to process tool results and generate final response
const finalResponse = await openaiClient.chat.completions.create({
model: OPENAI_MODEL,
messages: messages
});
console.log(finalResponse.choices[0].message.content);
Many MCP servers require authentication. Klavis handles this seamlessly:
# For OAuth services (Gmail, Google Drive, etc.)
server = klavis_client.mcp_server.create_server_instance(
server_name=McpServerName.GMAIL,
user_id="user123",
platform_name="MyApp"
)
# Option 1 - OAuth URL is provided in server.oauth_url, redirect user to OAuth URL for authentication
import webbrowser
webbrowser.open(server.oauth_url)
# Option 2 - or for API key services
klavis_client.mcp_server.set_auth_token(
instance_id=server.instance_id,
auth_token="your-service-api-key"
)
Want to run MCP servers yourself? All our servers are open-source:
# Clone the repository
git clone https://github.com/klavis-ai/klavis.git
cd klavis
# Run a specific MCP server
cd mcp_servers/github
docker build -t klavis-github .
docker run -p 8000:8000 klavis-github
checkout each readme for more details
We welcome contributions! Here's how to get started:
This project is licensed under the MIT License - see the LICENSE file for details.
Ready to supercharge your AI applications?
Get Started β’ Documentation β’ Discord β’ Examples