AutoML

An MCP server for data analysis workflows including reading, preprocessing, feature engineering, model selection, visualization, and hyperparameter tuning.

Updated 1 week ago
Added Jun 25, 2025

Docs & Usage Guide

Auto ML - Automated Machine Learning Platform

Python License MCP

An intelligent automated machine learning platform that provides comprehensive data analysis, preprocessing, model selection, and hyperparameter tuning capabilities through Model Context Protocol (MCP) tools.

🚀 Features

📊 Data Analysis & Exploration

  • Data Information: Get comprehensive dataset statistics including shape, memory usage, data types, and missing values
  • CSV Reading: Efficient CSV file reading with pandas and pyarrow support
  • Correlation Analysis: Visualize correlation matrices for numerical and categorical variables
  • Outlier Detection: Identify and visualize outliers in your datasets

🔧 Data Preprocessing

  • Automated Preprocessing: Handle missing values, encode categorical variables, and scale numerical features
  • Feature Engineering: Prepare features for both regression and classification problems
  • Data Validation: Check for duplicates and data quality issues

🤖 Machine Learning Models

  • Multiple Algorithms: Support for various ML algorithms including:
    • Regression: Linear Regression, Ridge, Lasso, ElasticNet, Random Forest, XGBoost, SVR, KNN, CatBoost
    • Classification: Logistic Regression, Ridge Classifier, Random Forest, XGBoost, SVM, KNN, Decision Tree, Naive Bayes, CatBoost

📈 Model Evaluation & Visualization

  • Performance Metrics:
    • Regression: R², MAE, MSE
    • Classification: Accuracy, F1-Score
  • Confusion Matrix Visualization: For classification problems
  • Model Comparison: Compare multiple models side-by-side

⚙️ Hyperparameter Tuning

  • Automated Tuning: Optimize model hyperparameters using advanced search algorithms
  • Customizable Scoring: Choose from various evaluation metrics
  • Trial Management: Control the number of optimization trials

📁 Project Structure

AutoML/
├── data/                   # Sample datasets
│   ├── Ai.csv
│   ├── Calories.csv
│   ├── Cost.csv
│   ├── Digital.csv
│   ├── Electricity.csv
│   ├── ford.csv
│   ├── Habits.csv
│   ├── heart.csv
│   ├── Lifestyle.csv
│   ├── Mobiles.csv
│   ├── Personality.csv
│   ├── Salaries.csv
│   ├── Shopper.csv
│   ├── Sleep.csv
│   ├── cat.csv
│   ├── test.csv
│   └── train.csv
├── tools/
│   └── all_tools.py       # MCP tool definitions
├── utils/
│   ├── before_model.py        # Feature preparation
│   ├── details.py             # Data information
│   ├── external_test.py       # External data test with XGBoost
│   ├── feature_importance.py  # Feature importance analysis
│   ├── hyperparameter.py      # Hyperparameter tuning
│   ├── model_selection.py     # Model selection and evaluation
│   ├── prediction.py          # Prediction utilities
│   ├── preprocessing.py       # Data preprocessing
│   ├── read_csv_file.py       # CSV reading utilities
│   └── visualize_data.py      # Visualization functions
├── main.py                # Application entry point
├── server.py              # MCP server configuration
├── requirements.txt       # Python dependencies
└── README.md             # This file

🛠️ Installation

Prerequisites

  • Python 3.8 or higher
  • pip or uv package manager

Setup

  1. Clone the repository

    git clone https://github.com/emircansoftware/AutoML.git
    cd AutoML
    
  2. Install dependencies

    # Using pip
    pip install -r requirements.txt
    pip install uv
    
    

Using with Claude Desktop

1. Data Path Setting

In utils/read_csv_file.py, update the path variable to match your own project directory on your computer:

# Example:
path = r"C:\\YOUR\\PROJECT\\PATH\\AutoML\\data"

2. Claude Desktop Configuration

In Claude Desktop, add the following block to your claude_desktop_config.json file and adjust the paths to match your own system:

{
  "mcpServers": {
    "AutoML": {
      "command": "uv",
      "args": [
        "--directory",
        "C:\\YOUR\\PROJECT\\PATH\\AutoML",
        "run",
        "main.py"
      ]
    }
  }
}

You can now start your project from Claude Desktop.

📋 Dependencies

  • MCP Framework: mcp[cli]>=1.9.4 - Model Context Protocol for tool integration
  • Data Processing: pandas>=2.3.0, pyarrow>=20.0.0, numpy>=2.3.1
  • Machine Learning: scikit-learn>=1.3.0, xgboost>=2.0.0, lightgbm>=4.3.0
  • Additional ML: catboost (for CatBoost models)

🎯 Usage

Starting the MCP Server

from server import mcp

# Run the server
mcp.run()

Available Tools

The platform provides the following MCP tools:

Data Analysis Tools

  • information_about_data(file_name): Give detailed information about the data
  • reading_csv(file_name): Read the csv file
  • visualize_correlation_num(file_name): Visualize the correlation matrix for numerical columns
  • visualize_correlation_cat(file_name): Visualize the correlation matrix for categorical columns
  • visualize_correlation_final(file_name, target_column): Visualize the correlation matrix after preprocessing
  • visualize_outliers(file_name): Visualize outliers in the data
  • visualize_outliers_final(file_name, target_column): Visualize outliers after preprocessing

Preprocessing Tools

  • preprocessing_data(file_name, target_column): Preprocess the data (remove outliers, fill nulls, etc.)
  • prepare_data(file_name, target_column, problem_type): Prepare the data for models (encoding, scaling, etc.)

Model Training & Evaluation

  • models(problem_type, file_name, target_column): Select and evaluate models based on problem type
  • visualize_accuracy_matrix(file_name, target_column, problem_type): Visualize the confusion matrix for predictions
  • best_model_hyperparameter(model_name, file_name, target_column, problem_type, n_trials, scoring, random_state): Tune the hyperparameters of the best model
  • test_external_data(main_file_name, target_column, problem_type, test_file_name): Test external data with the best model and return predictions
  • predict_value(model_name, file_name, target_column, problem_type, n_trials, scoring, random_state, input): Predict the value of the target column for new input
  • feature_importance_analysis(file_name, target_column, problem_type): Analyze the feature importance of the data using XGBoost

Example Workflow

# 1. Analyze your data
info = information_about_data("data/heart.csv")

# 2. Preprocess the data
preprocessed = preprocessing_data("data/heart.csv", "target")

# 3. Prepare features for classification
features = prepare_data("data/heart.csv", "target", "classification")

# 4. Train and evaluate models
results = models("classification", "data/heart.csv", "target")

# 5. Visualize results
confusion_matrix = visualize_accuracy_matrix("data/heart.csv", "target", "classification")

# 6. Optimize best model
best_model = best_model_hyperparameter("RandomForestClassifier", "data/heart.csv", "target", "classification", 100, "accuracy", 42)

📊 Sample Datasets (All CSV datasets are from Kaggle.)

The project includes various sample datasets for testing:

  • heart.csv: Heart disease prediction dataset
  • Salaries.csv: Salary prediction dataset
  • Calories.csv: Calorie prediction dataset
  • Personality.csv: Personality analysis dataset
  • Digital.csv: Digital behavior dataset
  • Lifestyle.csv: Lifestyle analysis dataset
  • Mobiles.csv: Mobile phone dataset
  • Habits.csv: Habit analysis dataset
  • Sleep.csv: Sleep pattern dataset
  • Cost.csv: Cost analysis dataset
  • ford.csv: Ford car dataset
  • Ai.csv: AI-related dataset
  • cat.csv: Cat-related dataset

🔧 Configuration

Environment Variables

  • Set your preferred random seed for reproducible results
  • Configure MCP server settings in server.py

Customization

  • Add new ML algorithms in utils/model_selection.py
  • Extend preprocessing steps in utils/preprocessing.py
  • Create custom visualization functions in utils/visualize_data.py

🤝 Contributing

We welcome contributions! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.

Contributing Guidelines

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

📞 Support

If you encounter any issues or have questions:

  1. Check the Issues page
  2. Create a new issue with detailed information
  3. Contact the maintainers

Privacy Policy   20.30ms  1.04MB