A standard interface for managing and querying MariaDB databases, supporting both standard SQL operations and advanced vector/embedding-based search.
The MCP MariaDB Server provides a Model Context Protocol (MCP) interface for managing and querying MariaDB databases, supporting both standard SQL operations and advanced vector/embedding-based search. Designed for use with AI assistants, it enables seamless integration of AI-driven data workflows with relational and vector databases.
The MCP MariaDB Server exposes a set of tools for interacting with MariaDB databases and vector stores via a standardized protocol. It supports:
.env
files.list_databases
list_tables
database_name
(string, required)get_table_schema
database_name
(string, required), table_name
(string, required)get_table_schema_with_relations
database_name
(string, required), table_name
(string, required)execute_sql
SELECT
, SHOW
, DESCRIBE
).sql_query
(string, required), database_name
(string, optional), parameters
(list, optional)MCP_READ_ONLY
is enabled.create_database
database_name
(string, required)Note: These tools are only available when EMBEDDING_PROVIDER
is configured. If no embedding provider is set, these tools will be disabled.
create_vector_store
database_name
, vector_store_name
, model_name
(optional), distance_function
(optional, default: cosine)delete_vector_store
database_name
, vector_store_name
list_vector_stores
database_name
insert_docs_vector_store
database_name
, vector_store_name
, documents
(list of strings), metadata
(optional list of dicts)search_vector_store
database_name
, vector_store_name
, user_query
(string), k
(optional, default: 7)The MCP MariaDB Server provides optional embedding and vector store capabilities. These features can be enabled by configuring an embedding provider, or completely disabled if you only need standard database operations.
EMBEDDING_PROVIDER
: Set to openai
, gemini
, huggingface
, or leave unset to disableOPENAI_API_KEY
: Required if using OpenAI embeddingsGEMINI_API_KEY
: Required if using Gemini embeddingsHF_MODEL
: Required if using HuggingFace embeddings (e.g., "intfloat/multilingual-e5-large-instruct" or "BAAI/bge-m3")DEFAULT_OPENAI_MODEL
, ALLOWED_OPENAI_MODELS
)A vector store table has the following columns:
id
: Auto-increment primary keydocument
: Text of the documentembedding
: VECTOR type (indexed for similarity search)metadata
: JSON (optional metadata)All configuration is via environment variables (typically set in a .env
file):
Variable | Description | Required | Default |
---|---|---|---|
DB_HOST |
MariaDB host address | Yes | localhost |
DB_PORT |
MariaDB port | No | 3306 |
DB_USER |
MariaDB username | Yes | |
DB_PASSWORD |
MariaDB password | Yes | |
DB_NAME |
Default database (optional; can be set per query) | No | |
MCP_READ_ONLY |
Enforce read-only SQL mode (true /false ) |
No | true |
MCP_MAX_POOL_SIZE |
Max DB connection pool size | No | 10 |
EMBEDDING_PROVIDER |
Embedding provider (openai /gemini /huggingface ) |
No | None (Disabled) |
OPENAI_API_KEY |
API key for OpenAI embeddings | Yes (if EMBEDDING_PROVIDER=openai) | |
GEMINI_API_KEY |
API key for Gemini embeddings | Yes (if EMBEDDING_PROVIDER=gemini) | |
HF_MODEL |
Open models from Huggingface | Yes (if EMBEDDING_PROVIDER=huggingface) |
.env
fileWith Embedding Support (OpenAI):
DB_HOST=localhost
DB_USER=your_db_user
DB_PASSWORD=your_db_password
DB_PORT=3306
DB_NAME=your_default_database
MCP_READ_ONLY=true
MCP_MAX_POOL_SIZE=10
EMBEDDING_PROVIDER=openai
OPENAI_API_KEY=sk-...
GEMINI_API_KEY=AI...
HF_MODEL="BAAI/bge-m3"
Without Embedding Support:
DB_HOST=localhost
DB_USER=your_db_user
DB_PASSWORD=your_db_password
DB_PORT=3306
DB_NAME=your_default_database
MCP_READ_ONLY=true
MCP_MAX_POOL_SIZE=10
.python-version
)uv
(if not already):
pip install uv
uv pip compile pyproject.toml -o uv.lock
uv pip sync uv.lock
.env
in the project root (see Configuration)python server.py
Adjust entry point if needed (e.g., main.py
){
"tool": "execute_sql",
"parameters": {
"database_name": "test_db",
"sql_query": "SELECT * FROM users WHERE id = %s",
"parameters": [123]
}
}
{
"tool": "create_vector_store",
"parameters": {
"database_name": "test_db",
"vector_store_name": "my_vectors",
"model_name": "text-embedding-3-small",
"distance_function": "cosine"
}
}
{
"tool": "insert_docs_vector_store",
"parameters": {
"database_name": "test_db",
"vector_store_name": "my_vectors",
"documents": ["Sample text 1", "Sample text 2"],
"metadata": [{"source": "doc1"}, {"source": "doc2"}]
}
}
{
"tool": "search_vector_store",
"parameters": {
"database_name": "test_db",
"vector_store_name": "my_vectors",
"user_query": "What is the capital of France?",
"k": 5
}
}
{
"mcpServers": {
"MariaDB_Server": {
"command": "uv",
"args": [
"--directory",
"path/to/mariadb-mcp-server/",
"run",
"server.py"
],
"envFile": "path/to/mcp-server-mariadb-vector/.env"
}
}
}
or If already running MCP server
{
"servers": {
"mariadb-mcp-server": {
"url": "http://{host}:9001/sse",
"type": "sse"
}
}
}
logs/mcp_server.log
by default.config.py
and logger setup).src/tests/
directory.src/tests/README.md
for an overview.