MCP Server to do dynamic AI SOC Security Threat analysis for a Text2SQL AI Agent.
A powerful AI-driven Security Operations Center (SOC) Text2SQL framework based MCP Server (Local and Remote) for converting natural language Prompts to SQL queries dynamically, with integrated security threat analysis and monitoring.
pip install mcp-ai-soc-sher
# Set your OpenAI API key
import os
os.environ["OPENAI_API_KEY"] = "your-api-key-here"
# Use as local server
from mcp_ai_soc_sher.local import LocalMCPServer
server = LocalMCPServer()
server.start()
# Or run from command line
# mcp-ai-soc --type local --stdio --sse
# Run local server with STDIO interface
mcp-ai-soc --type local --stdio
# Run local server with SSE interface
mcp-ai-soc --type local --sse
# Run remote server with REST API
mcp-ai-soc --type remote
Create a .env
file with your configuration:
OPENAI_API_KEY=your_openai_api_key_here
MCP_DB_URI=sqlite:///your_database.db
MCP_SECURITY_ENABLE_THREAT_ANALYSIS=true
See the documentation for all configuration options.
import json
import requests
# Query the server
response = requests.post(
"http://localhost:8000/api/sql",
headers={"Content-Type": "application/json", "X-API-Key": "your-api-key"},
json={
"query": "Find all suspicious login attempts in the last 24 hours",
"optimize": True,
"execute": True
}
)
# Process the response
result = response.json()
print(f"SQL Query: {result['sql']}")
if result['results']:
print("Results:")
for row in result['results']:
print(row)
MIT License with Additional Conditions. Copyright (c) 2025 Akram Sheriff.
See LICENSE for details.
Contributions are welcome! Please see CONTRIBUTING.md for guidelines.